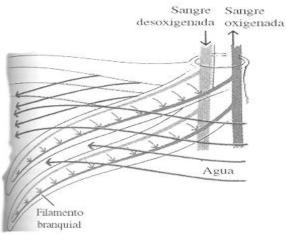

PRÁCTICA DEL SISTEMA RESPIRATORIO EN MAMÍFEROS


1. Introducción

La digestión es el proceso por el cual las sustancias alimenticias ingeridas por un animal son degradadas a moléculas orgánicas más pequeñas y luego absorbidas en el torrente sanguíneo, a través del cual pueden ser transportadas a las distintas células que componen el organismo. La liberación de energía por estas moléculas -la única fuente de energía para las células heterótrofas- depende de su oxidación. Este proceso habitualmente (aunque no siempre) requiere oxígeno y, cuando éste interviene, se llama respiración aerobia.

En realidad, la respiración tiene dos significados en biología. A nivel celular se refiere a las reacciones químicas que requieren oxígeno que obtiene en las mitocondrias y es la fuente principal de energía para las células eucarióticas. A nivel del organismo completo designa al proceso de tomar oxígeno del ambiente y devolverle a este dióxido de carbono.

El consumo de oxígeno está directamente relacionado con el gasto energético y, de hecho, los requerimientos energéticos se calculan midiendo la absorción de oxígeno o la liberación de dióxido de carbono. El gasto energético en reposo se conoce como metabolismo basal.

El oxígeno penetra y se mueve en las células por difusión. Dentro de la célula, como hemos indicado, toma parte en la oxidación de compuesto orgánicos que sirve como fuente de energía celular. En este proceso se produce dióxido de carbono, que sale de la célula a favor de gradiente de concentración (presión parcial). Esto es cierto para todas las células, ya se trate de 1a ameba, el parameciun, la célula hepática o célula cerebral. Pero las sustancias pueden moverse eficiente por difusión sólo hasta distancias muy cortas (menores de un milímetro) Estos límites no les plantean problemas a los animales muy pequeños en los que cada célula está muy próxima a la superficie o a los animales en los que la mayor parte de la masa corporal no es activa metabólicamente como la mesoglea ("gelatina") de las medusas. Muchos huevos y embriones también obtienen oxígeno de sencilla esta forma particularmente en las primeras etapas del desarrollo.

Las branquias y los pulmones son los modelos que utilizan los vertebrados para realizar la respiración y de hecho son modos de incrementar la superficie respiratoria. Las branquias usualmente son evaginaciones mientras que los pulmones son invaginaciones o cavidades. La superficie respiratoria de la branquia parecida a la de la lombriz de tierra es una capa unicelular, expuesta al ambiente de un lado y a los vasos del sistema circulatorio del otro. Las capas de tejido branquial pueden estar extendidas en un plano apiladas o formar distintos tipos de circunvoluciones. La branquia de una ostra, por ejemplo, tiene la forma de un radiador accionado por vapor de agua (que también ha sido diseñado para ofrecer una relación alta de la superficie al volumen).

Se cree que la branquia de los vertebrados se originó primariamente como un dispositivo para la alimentación. Los vertebrados primitivos respiraban principalmente a través de su piel. Filtraban el agua hacia sus bocas y la expulsaban a través de lo que conocemos ahora como sus hendiduras branquiales extrayendo los trocitos de materia orgánica del flujo de agua. Branchiostoma que según se cree se asemeja mucho a los vertebrados ancestrales se alimenta de esta manera. A lo largo del tiempo entraron en acción presiones selectivas relacionadas principalmente con la depredación. Como consecuencia hubo una tendencia a incrementar el grosor de la piel inclusive a blindarla o cubrirla con escamas. Una piel de este tipo por supuesto no es útil para propósitos respiratorios. Al mismo tiempo operaban fuerzas relacionadas que originaron animales de mayor tamaño y más rápidos, por consiguiente, más eficientes para capturar presas y para escapar de los depredadores. Estos animales tenían requerimientos energéticos y en consecuencia, requerimientos de oxígeno más altos. Estos problemas se solucionaron "capturando" a las branquias para un nuevo propósito: el intercambio respiratorio.

En la mayoría de los peces el agua (en la que el oxígeno está disuelto) es bombeada al interior de la boca por las oscilaciones de la cubierta ósea de las branquias y fluye hacia afuera a través de las branquias. En las branquias de los peces los vasos de la circulación están dispuestos de modo tal que la sangre es bombeada a través de ellos en dirección opuesta a la del agua que contiene oxígeno. Esta disposición de contracorriente da como resultado una transferencia de oxígeno a la sangre mucho más eficiente que si ésta fluyese en la misma dirección que el agua.

Los nadadores rápidos, como la caballa, obtienen suficiente oxígeno para satisfacer sus requerimientos energéticos manteniendo sus bocas abiertas cuando nadan. Como resultado de ello, el agua se mueve rápidamente sobre las branquias.

Los pulmones son cavidades internas en las que se absorbe el oxígeno contenido en el aire. Tienen una desventaja si se los compara con las branquias: desde el punto de vista de la difusión, es ineficiente tener un flujo continuo a través de la superficie respiratoria. Sin embargo, el aire es una fuente de oxígeno muy superior al agua; 21 % del aire de la atmósfera actual es oxígeno. Así un pez gasta hasta el 20% de su energía en el trabajo muscular asociado con la respiración, mientras que un organismo que respira aire gasta solamente entre 1 y 2% de su energía en la

respiración. Además, el oxígeno se difunde aproximadamente 300.000 veces más rápido en el aire que en el agua.

La ventaja abrumadora de los pulmones es que las superficies respiratorias pueden mantenerse húmedas sin que se produzca una pérdida grande de agua por evaporación. Aunque los pulmones son fundamentalmente una "invención" de los vertebrados, se los encuadra en algunos invertebrados. Los caracoles terrestres, por ejemplo, han desarrollado independientemente pulmones que son notablemente similares a los de algunos anfibios.

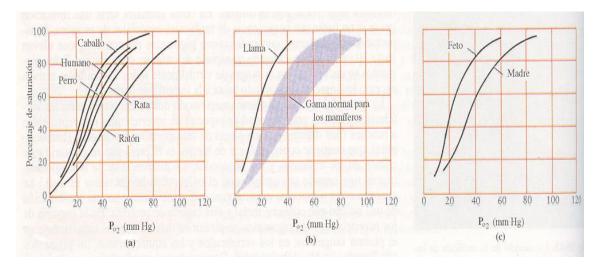
Algunos peces primitivos tenían pulmones y branquias a la vez, aunque estos pulmones sólo eran eficientes para desempeñar la función de estructuras respiratorias accesorias. Probablemente fueron una adaptación especial a la vida en el agua dulce que, a diferencia del agua, puede estancarse (quedar vaciada de oxígeno). Todavía existen unas pocas especies de peces pulmonados que, subiendo a la superficie e incorporando bocanadas de aire, pueden vivir en agua que contiene suficiente oxígeno.

Los anfibios y los reptiles tienen pulmones relativamente simples, con pequeñas áreas superficiales internas, aunque sus pulmones son más grandes y complejos que los de los peces pulmonados. Los pulmones de estos últimos se desarrollaron directamente a partir de la faringe, que es la porción posterior de la cavidad bucal y que llega al tubo digestivo. Los anfibios todavía dependen en gran medida de su piel para el intercambio gaseoso, pero los reptiles respiran casi enteramente por sus pulmones.

Un rasgo importante de los pulmones de todos los vertebrados es que el intercambio de aire con la atmósfera ocurre por flujo global, como resultado de cambios en el volumen pulmonar. Estos pulmones se conocen como pulmones de ventilación. Las ranas tragan aire y fuerzan su ingreso a los pulmones, en un movimiento de deglución: luego abren la glotis y permiten que el aire salga nuevamente. En los reptiles, aves y mamíferos el aire entra y sale de los pulmones como consecuencia de cambios en el tamaño de la cavidad torácica producidos por contracciones y relajaciones musculares.

2.1. EL TRANSPORTE E INTERCAMBIO DE GASES.

El oxígeno es relativamente insoluble en el plasma sanguíneo (la parte líquida de la sangre), sólo cerca de 0,3 milímetros de oxígeno se disolverán en 100 mililitros de plasma a presión atmosférica normal. En otros animales sería una limitación grave si no fuese por la presencia de moléculas especiales de proteína, transportadoras de oxígeno, conocidas como pigmentos respiratorios, que elevan hasta 70 veces la capacidad de transporte de oxígeno de la sangre. Estos pigmentos se encuentran en la sangre de todos los animales activos excepto los insectos, incluyendo hasta a la lombriz de tierra.


La hemoglobina es el pigmento respiratorio que se encuentra entre los vertebrados y en una gran variedad de especies de invertebrados que representan a muchos filos diferentes. Se conocen otros pigmentos respiratorios, todos los cuales son una combinación de una unidad que contiene un grupo de naturaleza inorgánica y una cadena de proteína. En los vertebrados los pigmentos son llevados en los glóbulos rojos.

La hemoglobina está constituida por cuatro subunidades, cada una de las cuales comprende un grupo hemo y una cadena polipeptídica. La unidad hemo consiste en un anillo de porfirina con un átomo de hierro en el centro. El hierro de cada unidad hemo puede combinarse con una de oxígeno, así cada molécula de hemoglobina puede llevar cuatro moléculas de oxígeno. Las moléculas de oxígeno se añaden una por vez.

La combinación de la primera subunidad (Hb) con el oxígeno incrementa la afinidad de la segunda por el oxígeno y la oxigenación de la segunda incrementa, la afinidad de la tercera, y así sucesivamente. Como consecuencia del cambio en la afinidad de la molécula de hemoglobina por el oxígeno, la curva que relaciona la absorción de oxígeno con la PO2 no es una línea recta, sino que tiene una forma sigmoidea característica. Cuando la hemoglobina está completamente oxigenada, permite a nuestro torrente sanguíneo transportar aproximadamente 65 veces el oxígeno que podría ser transportado por un volumen igual de plasma sólo.

De la presión parcial de oxígeno (P02) en el plasma sanguíneo circundante, depende de que el oxígeno se con la hemoglobina o ésta lo libere. El oxígeno se difunde del aire a los capilares alveolares. En estos capilares donde la P02 es alta, la mayoría de la hemoglobina está combinada con el oxígeno. Sin embargo, en los tejidos en que la P02 es más baja, el oxígeno se libera de las moléculas de hemoglobina al plasma y se difunde en los tejidos. Este sistema compensa automáticamente los requerimientos de oxígeno de los tejidos. Por ejemplo, en los humanos adultos la PO2, cuando la sangre deja los pulmones, es aproximadamente 100 mm Hg a esta presión la hemoglobina está saturada con oxígeno.

A medida que las moléculas de hemoglobina pasan a través de los capilares de los tejidos, la PO2 cae y, a medida que cae, el oxígeno unido a las moléculas de hemoglobina se desprende. Se produce poco oxígeno cuando la PO2 cae de 100 mm. Hg a 60 mm. Este factor de seguridad inherente asegura que el oxígeno sea entregado a los tejidos aun cuando la PO2 sanguínea máxima sea inferior a la normal como por ejemplo en individuos que viven a grandes alturas o que tienen enfermedades cardíacas y pulmonares. Sin embargo, citando la PO2 cae por debajo de 60 mm Hg, el oxígeno se desprende mucho más fácilmente.

Estas curvas muestran de qué manera el oxígeno llevado por la hemoglobina se relaciona con la presión de oxígeno en varios mamíferos diferentes. Una curva situada a la derecha de otra significa que el oxígeno es liberado más fácilmente a una presión determinada.

- a) Los animales pequeños tienen tasas metabólicas más altas y por tanto necesitan más oxigeno por gramo de tejido que los animales más grandes. En consecuencia, su sangre desprende oxigeno más fácilmente.
- b) La llama que vive en las alturas do los Andes de Sudamérica tiene una hemoglobina que le permite a su sangre incorporar oxigena más fácilmente a las presiones atmosféricas bajas.
- c) El feto debe absorber todo su oxígeno a partir de la sangre materna. La hemoglobina de los fetos de mamíferos tiene una mayor afinidad por el oxígeno que la hemoglobina de los mamíferos adultos y por tanto el oxígeno tiende a difundirse de la sangre materna a la sangre fetal.

La PO2 de la sangre en los capilares de los tejidos es normalmente de unos 40 mm Hg. En consecuencia, aun después que la sangre ha pasado a través de los capilares de los tejidos, su hemoglobina está todavía saturada en un 70%. El oxígeno transportado por la hemoglobina representa una provisión de reserva de este gas precioso para el caso que se incremente la demanda como resultado, por ejemplo, de ejercicios. En una situación de este tipo, las células respiran más rápidamente, se consume más oxígeno, la PO2 disminuye y se desprende más oxígeno de las moléculas de hemoglobina.

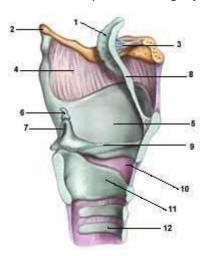
2. Anatomía del aparato respiratorio

En el hombre, como en los todos los vertebrados tetrápodos terrestres, el aparato de intercambio gaseoso presenta unas vías aéreas y los pulmones

2.1. Vías aéreas

Son conductos por donde circula el aire, desde el exterior a los pulmones y viceversa.

Las fosas nasales. Son dos cavidades sinuosas, separadas entre sí por un delgado tabique medio y situadas detrás de la nariz y sobre la bóveda palatina. En su organización anatómica destacan los cornetes superior, medio e inferior, que corresponden a expansiones óseas.


Por dentro la cavidad nasal se tapiza de una mucosa, la pituitaria, en la cual se distinguen dos zonas o tipos:

- la pituitaria roja, mucosa muy vascularizada; posee un epitelio ciliado con células caliciformes y contiene células secretoras de mucus. Esta constitución y la riqueza de vasos sanguíneos, junto a la existencia de los cornetes, permiten que el aire que penetra por la nariz se caliente, se humedezca y se filtre. Por tanto, es más conveniente inspirar por la nariz que por la boca.
- la pituitaria amarilla está situada en la parte superior de las fosas nasales, y tiene función olfativa.

El aire pasa desde la cavidad nasal a la faringe, a través de las coanas, y de allí a la laringe.

La laringe, también llamada caja de la voz, es una caja de tejido cartilaginoso, suspendida mediante ligamentos, del hueso hioides. Básicamente está formada por un esqueleto cartilaginoso y una mucosa que la recubre interiormente. Los cartílagos más importantes son:

- Tiroides, el más grande, que forma la "nuez de Adán".
- Cricoides, forma un anillo en la base de la laringe
- Epiglótico, es el armazón de la epiglotis
- Aritenoides, par de cartílagos junto al cricoides.

1. Epiglotis. 2. Hueso Hioides, 3. Ligamento hioepiglótico, 4. Membrana tirohioidea,

5. Cartílago tiroides, 6. Cartílago corniculado,

7. Cartílago aritenoides, 8. Ligamento tiroepiglótico, 9.

Ligamento vocal, 10. Membrana cricotiroidea, 11.

Cartílago cricoides, 12. Tráquea

La mucosa interior presenta dos pares de pliegues que se proyectan en la, luz de la laringe. El primero constituye las cuerdas vocales superiores o falsas. El segundo, las cuerdas vocales inferiores o verdaderas. Entre las cuerdas superiores e inferiores se encuentra, a cada lado, una depresión llamada ventrículo laríngeo

La Tráquea es un tubo rectilíneo de unos 12 cm de longitud por 12 mm de diámetro; desciende hacia el tórax por encima del esófago, del cual se diferencia por poseer unos anillos de cartílago en forma de C (de 15 a 20) encajados en sus paredes, que dan rigidez al tubo; esta estructura impide que se pueda aplastar, a pesar de que la presión en el interior del tubo durante la entrada del aire sea inferior a la atmosférica. Interiormente está recubierta de un epitelio de células prismáticas o piramidales, cuya superficie está provista de cilios y numerosas células mucosas. La tráquea se bifurca formando los bronquios.

Los Bronquios son las ramas que parten de la tráquea, una a cada lado, y cuya estructura es similar a la de ésta; penetran en los pulmones por una zona llamada hilio,

2.2. Los Pulmones

Son los órganos encargados del intercambio propiamente dicho; hay dos, uno a cada lado de la cavidad torácica.

Su forma es de semicono, con una cara exterior abombada del lado de las costillas, y una cara interior plano-deprimida hacia el centro en la región del "hilio" pulmonar; que limita un espacio situado entre los dos pulmones llamado mediastino. La cara basal es arqueada hacia arriba y reposa sobre el diafragma. El pulmón derecho está dividido en tres lóbulos o porciones y es más grande que el izquierdo, que sólo tiene dos. Se encuentran recubiertos por un epitelio delgado, la **pleura**, que los relaciona a su vez con la caja torácica y diafragma, y que cumple un importante papel en la función pulmonar

A partir del hilio, los bronquios principales se dividen y subdividen para formar un verdadero "árbol bronquial" en el interior de los pulmones; las ramas terminales más finas son los bronquiolos cuya pared carece de cartílago, y conforme se hacen más delgados su epitelio pasa a ser plano, pero sigue poseyendo las fibras musculares lisas, dispuestas anularmente y cuya contracción puede actuar de esfínter.

Los bronquios más pequeños terminan en una estructura a manera de racimos de uvas, "las vesículas pulmonares", en las cuales cada dilatación es un "alvéolo pulmonar", formado por una capa epitelial plana. Por la pared de estos alvéolos se extiende una red de capilares sanguíneos y es justo aquí donde tiene lugar el intercambio gaseoso con la sangre o hematosis. El conjunto de estas vesículas aéreas forma la estructura esponjosa y elástica que se observa en los pulmones, dando una superficie de intercambio estimada en unos 100 m2 por pulmón.

3. Objetivo de la práctica

Exploración externa e interna de las vías respiratorias y los pulmones.

4. Material necesario

- Cubeta de disección
- Material de disección
- Pulmón de cordero o cerdo

5. Procedimiento

a. Preparación:

- Ponte los guantes de látex para asegurar la higiene y evitar el contacto directo con el órgano.
- Coloca el pulmón de cordero sobre una superficie plana y protegida, como una bandeja o un plato grande. Si es necesario, coloca papel absorbente para que el tejido se mantenga firme.

b. Observación inicial:

- Examina el pulmón por fuera. Observa su tamaño, forma, textura y color.
 Típicamente, los pulmones de cordero son de color rosado pálido y tienen una textura esponjosa.
- Siente la consistencia del pulmón con los dedos. Debería sentirse suave pero firme.

c. Prueba de absorción de aire:

 Si quieres observar cómo el pulmón se expande al "respirar", puedes intentar soplar aire a través de una de las vías respiratorias del pulmón (bronquio) y observar cómo se infla, similar al proceso de respiración.

d. Corte transversal:

- Con las tijeras o el bisturí, realiza un corte transversal (en forma de rebanada) de aproximadamente 2-3 cm de grosor a través de un lóbulo del pulmón. Hazlo cuidadosamente para no dañar los tejidos.
- Observa la estructura interna del pulmón. Deberías notar una textura esponjosa debido a la gran cantidad de alvéolos.

e. Observación de alvéolos:

- Si tienes acceso a un microscopio, corta una sección muy fina del tejido pulmonar y colócala en una placa de Petri con una gota de agua destilada.
- Coloca la muestra bajo el microscopio y observa los alveolos. Los alveolos son pequeños sacos de aire donde ocurre el intercambio de gases (oxígeno y dióxido de carbono). Estúdialos y dibuja lo que ves.

f. Identificación de estructuras:

o Observa las siguientes estructuras y haz un dibujo o esquema de estas:

- Bronquios: Son los conductos principales que transportan aire hacia los pulmones. Son más gruesos y tienen una estructura más firme.
- alvéolos: Pequeños sacos de aire que se agrupan en racimos, y son los encargados del intercambio gaseoso.
- Vasos sanguíneos: En los pulmones también se encuentran vasos sanguíneos, como las arterias y venas pulmonares, que son pequeños y finos.

6. Conclusiones

- a. Reflexiona sobre el proceso respiratorio en los mamíferos. ¿Cómo facilita la estructura del pulmón el intercambio de gases?
- b. Piensa en la importancia de los alveolos y cómo su estructura maximiza la superficie disponible para el intercambio gaseoso.

7. Preguntas de reflexión

- a. ¿Qué función tienen los alvéolos en el pulmón de cordero?
- b. ¿Por qué es importante que el pulmón sea esponjoso y tenga una gran cantidad de alvéolos?
- c. ¿Cuál es la relación entre la estructura del pulmón y su función en el proceso de respiración?
- d. ¿Qué diferencias encuentras entre el pulmón de cordero y el de otros mamíferos (por ejemplo, el de un ser humano)?